class TwistedEdwards extends Base (View source)

Curves over ax^2 + y^2 = 1 + dx^2*y^2

## Properties

 protected object[] \$doubles Doubles from  Base protected BigInteger \$order The Order from  Base protected Integer \$factory Finite Field Integer factory from  Base protected BigInteger \$modulo The modulo protected object \$a Cofficient for x^2 protected object \$d Cofficient for x^2*y^2 protected object[] \$p Base Point protected object \$zero The number zero over the specified finite field protected object \$one The number one over the specified finite field protected object \$two The number two over the specified finite field

## Methods

object
randomInteger()

Returns a random integer

from  Base
object
convertInteger(BigInteger \$x)

Converts a BigInteger to a FiniteField integer

from  Base
int
getLengthInBytes()

Returns the length, in bytes, of the modulo

from  Base
int
getLength()

Returns the length, in bits, of the modulo

from  Base
array
multiplyPoint(array \$p, Integer \$d)

Multiply a point on the curve by a scalar

from  Base
FiniteField
createRandomMultiplier()

Creates a random scalar multiplier

from  Base
setOrder(BigInteger \$order)

Sets the Order

from  Base
getOrder()

Returns the Order

from  Base
object
setReduction(callable \$func)

Use a custom defined modular reduction function

from  Base
object[]
convertToAffine(array \$p)

Returns the affine point

object[]
convertToInternal(array \$p)

Converts an affine point to a jacobian coordinate

from  Base
object[]
negatePoint(array \$p)

Negates a point

from  Base
int[]

from  Base
setModulo(BigInteger \$modulo)

Sets the modulo

setCoefficients(BigInteger \$a, BigInteger \$d)

Set coefficients a and b

setBasePoint(\$x, \$y)

Set x and y coordinates for the base point

getA()

Returns the a coefficient

getD()

Returns the a coefficient

array
getBasePoint()

Retrieve the base point as an array

getModulo()

Returns the modulo

bool
verifyPoint(array \$p)

Tests whether or not the x / y values satisfy the equation

## Details

### in Base at line 63``` object randomInteger() ```

Returns a random integer

 object

### in Base at line 73``` object convertInteger(BigInteger \$x) ```

Converts a BigInteger to a FiniteField integer

#### Parameters

 BigInteger \$x

 object

### in Base at line 83``` int getLengthInBytes() ```

Returns the length, in bytes, of the modulo

 int

### in Base at line 93``` int getLength() ```

Returns the length, in bits, of the modulo

 int

### in Base at line 108``` array multiplyPoint(array \$p, Integer \$d) ```

Multiply a point on the curve by a scalar

Uses the montgomery ladder technique as described here:

#### Parameters

 array \$p Integer \$d

 array

### in Base at line 130``` FiniteField createRandomMultiplier() ```

Creates a random scalar multiplier

#### Return Value

 FiniteField

### in Base at line 144``` setOrder(BigInteger \$order) ```

Sets the Order

#### Parameters

 BigInteger \$order

### in Base at line 154``` BigInteger getOrder() ```

Returns the Order

### in Base at line 164``` object setReduction(callable \$func) ```

Use a custom defined modular reduction function

#### Parameters

 callable \$func

 object

### at line 180``` object[] convertToAffine(array \$p) ```

Returns the affine point

#### Parameters

 array \$p

#### Return Value

 object[]

### in Base at line 184``` object[] convertToInternal(array \$p) ```

Converts an affine point to a jacobian coordinate

#### Parameters

 array \$p

#### Return Value

 object[]

### in Base at line 194``` object[] negatePoint(array \$p) ```

Negates a point

#### Parameters

 array \$p

#### Return Value

 object[]

### in Base at line 211``` int[] multiplyAddPoints(array \$points, array \$scalars) ```

#### Parameters

 array \$points array \$scalars

 int[]

### at line 96``` setModulo(BigInteger \$modulo) ```

Sets the modulo

#### Parameters

 BigInteger \$modulo

### at line 108``` setCoefficients(BigInteger \$a, BigInteger \$d) ```

Set coefficients a and b

#### Parameters

 BigInteger \$a BigInteger \$d

### at line 120``` setBasePoint(\$x, \$y) ```

Set x and y coordinates for the base point

 \$x \$y

### at line 142``` Integer getA() ```

Returns the a coefficient

### at line 152``` Integer getD() ```

Returns the a coefficient

### at line 162``` array getBasePoint() ```

Retrieve the base point as an array

 array

### at line 198``` BigInteger getModulo() ```

Returns the modulo

### at line 208``` bool verifyPoint(array \$p) ```

Tests whether or not the x / y values satisfy the equation

#### Parameters

 array \$p

 bool